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Note 

Pointwise Feature Sensitivity Analysis 

I. INTRODUCTION 

Mathematical models in chemistry, physics, biology and engineering have 
become increasingly more complicated. In order to assess the quality and effec- 
tiveness of an assumed model and also to gain further insight into the model’s 
nature, investigations are often undertaken for the purpose of unravelling the 
relationship between the output and input of the model. The effective and efficient 
exploration of this relationship forms the domain of sensitivity analysis [ 1, 2). Here 
we will be concerned in particular with the question of how input parameters affect 
structural features of the output. The model in its simplest form is considered to be 
a function of some variable, say x. The features of interest then arise in a plot of the 
output versus x over some domain in x. The relationship between these features 
and model input parameters, aj (j= l,..., L) is the focus of this paper. 

The plotting of output as a function of some independent variable such as energy, 
frequency, time, angle, quantum number, etc., is a very common practice in the 
analysis of physical problems. Such plots are particularly important in exhibiting 
interesting characteristics or trends in a system. Interest in the dependence of this 
behavior on other input parameters of the system then naturally follows. In recent 
work [3,4], a sensitivity analysis approach has been developed for examining such 
dependencies and applied to problems in molecular dynamics and kinetics. The 
approach involves first fitting the output over the domain in x by a judiciously 
chosen function that contains several parameters, each of which controls a par- 
ticular feature of interest. Then by combining the fitting with knowledge of certain 
so-called elementary sensitivities (i.e., partial derivatives of output with respect to 
input) sensitivities of the feature parameters with respect to the input parameters 
are determined. In this paper an alternative approach is explored, one that does not 
depend upon any fitting procedure. 

The alternative approach is based on the fact that features can be typically 
described by the behavior of just a few representative points or characteristics of the 
graphed observable. Thus, for example, one might describe an oscillatory output in 
terms of its extrema or frequency. The values and positions of such critical points 
will then depend on the input parameter values and hence viewed from this perspec- 
tive, feature analysis reduces to the determination of pointwise sensitivity infor- 
mation. A special case of this perspective is given in our work [3] and by Cacuci et 
al. [S], where sensitivities at an extremum are used to determine the effect of 
parameter variations on its position. More recently, Cacuci [6] has given a very 
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general procedure for determining feature sensitivities. The feature of interest which 
may depend on an extremum, saddle or inflection point of the output, is written as 
an objective functional containing the output and the critical point. Sensitivity 
expressions are then determined for such features. The same functional perspective 
is also mentioned in our earlier work [4]. It is worth pointing out [6] that con- 
siderable computational savings can be achieved if: (i) the desired objectives can be 
identified prior to the sensitivity calculation and (ii) the number of such objectives 
does not exceed the number of system variables or parameters. Unfortunately, in 
many real problems one or both of these criteria are not satisfied. When the latter 
circumstances arise the procedures in the present paper offer the widest realm of 
computational flexibility. In this paper, we seek to further stimulate interest in the 
employment of feature sensitivity analysis. In particular, sensitivity expressions are 
presented and applied which, while they may in the main be derived from the 
analysis of [6], make transparent the simplicity of the approach for a great variety 
of problems in the sciences and engineering. 

In Section II the basic theory is presented for the determination of feature sen- 
sitivity coefficients from a pointwise analysis and Section III gives a simple example. 
Concluding remarks are contained in Section IV. 

II. THEORY 

Consider an output O,(x), where x is the variable as a function of which O,(x) 
exhibits features’ and a is the input parameter vector with components ~1, 
(I= l,..., L). For the purpose of illustration suppose that our interest lies in the 
value and position of a feature defined by the constraint that 

O,(x) = h (11.1) 

where h is assumed to be independent of x and a. From Eq. (11.1) we then obtain a 
solution for the position of the feature 

x* = x*(a, h) (11.2) 
or possibly a set of solutions 

xfyu, h) )...) x$(u, h). (11.3) 

Let us examine what happens when one of the parameters in a, say a,,, 
I’ E {l,..., L}, is varied by an amount Au,. Clearly by definition the value of the 
feature will be unchanged. Its position x *, however, will change and the variation in 
position may be expanded as a power series in Act., i.e., 

x*(a + Au, h) = ~*(a, h) + acr, ax* Aq, + . . . (IL4a) 

’ The analysis here can be readily extended to consider features appearing in several dimensions. 
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where 

Au = (0 ,..., 0, Acq, 0 ,..., 0) (11.4b) 

and Aar appears in the I’th position in the vector Au. The quantity ax*/&,. in 
Eq. (11.4a) is an example of a so-called feature sensitivity coefficient in that it quan- 
tifies how in particular the position of a feature responds to variations in input 
parameters. It is determined by first noticing that according to the constraint of 
Eq. (11.1) 

0 ax* 
a+~a x*+-Ada, + ... aa, 

It follows that to first order in AC+ that 

a0 a 
aa Aa++% _ g Acrr = h - 0,(x*) = 0 

I’ x=x’ x-x* I 

so that 

ax* a0 -=-a 
act,. X=X. YG x=x.' I 

80, 
au, 1 I 

This argument applies to any of the points in (11.3) so that finally 

(j= l,..., N). 

(11.6) 

(11.7) 

(11.8) 

The analysis ‘presented thus far in this section is now extended. We begin by 
defining the feature of interest in terms of the constrained operator equation 

F(O, 1 x)=0 (11.9) 

where E is an arbitrary operator. The previous analysis could then be invoked by 
introducing a particular operator P such that 

&O, 1 x)=0,-h. (11.10) 

The purpose of the generalization is to provide the tools to enable us to examine 
features which are described in terms of minima, maxima, points of inflexion, 
integral transforms, etc. For example, in the case of an extremum we would 
introduce the derivative operator 

Pyo, 1 x)=$0.(x) (II.1 1) 
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or for a point of inflexion 

d*O&) P”(O,I x) =7. 

Similarly @O,I x) could be a functional of 0, such as 

P”‘( 0, 1 x) = j- W(x, x’) 0,(x’) dx’ (11.13) 

where W(x, x’) is an appropriate weighting function. Consider then Eq. (11.9). Sup- 
pose that one of the input parameters, LY,, say, is varied by an amount Aa, where 
1’ E (l,..., L}. Assuming that x* is a solution to Eq. (11.9) (and that Pis independent 
of ap) we find that 

ax* 
x*+-Aa, + ... a@, =0 

where Aa = (0 ,..., 0, da., 0 ,..., 0). To first order in da,. Eq. (11.14) now becomes 

Ft”a I x*) + aa, 2 F(O, 1 x) 

x=x* 
Au, +; p(O, I x) aX*Aa,.=O 

X=Xa aa, 
(11.15) 

so that the feature sensitivity coefficient ax*/aa,. is given by 

(11.16) 

In the .case that Eq. (11.9) has several solutions, say xi+,..., xl: the equivalent 
argument yields the sensitivity coeflicients for any of the solutions. Thus, 

%= 
aa,. - ““;;, x)~x=xjap(;;’ x)/x_i (j= l,..., N). (11.17) 

Although the actual observable associated with the features may not be 0, itself the 
sensitivity of the latter “elementary” observable at the point x,+, Jo (l,..., N}, will 
often be of interest. This gradient may be calculated by combining the direct 
variation of CQ with the one implicitly contained in x,? to obtain 

(j= l,..., N). (11.18) 

The above analysis can be further extended to deal with the situation where a 
feature of interest is constrained by the value and/or position of another feature. An 
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example of this might be the width at half-maximum of a peaking function. 
Mathematically this reduces in general to the two operator equations 

E(O,I x)=0 (11.19a) 

NOa I x) = K,(x*) (11.19b) 

where x* = (XT,..., xx) are solutions of Eq. (11.19a). Then following the same 
analysis as before, i.e., varying a parameter clp by say Am,., I’ E {l,..., L}, and 
equating the first order terms in Act,, on the left-hand side and right-hand side of the 
resulting equation 

(11.20) 

where the points, s,* (p = l,..., Q) are solutions of Eq. (11.19b). Rewriting Eq. (11.20) 
in order to obtain an explicit expression for the feature sensitivity coefficient 
d$/i3al., p E ( l,..., Q}, we derive 

aK (I + t s 
as,* aa,. xI j=, axj x* aar 
ac(,= 8R a 

ax s; 

(11.21) 

The choice of constraining operator equation is in a sense arbitrary. It will 
depend upon the kind of information or parameter dependence that the observer is 
seeking to obtain. 

III. EXAMPLE: ELASTIC DIFFERENTIAL SCATTERING 

The simple example here serves to elucidate the basic concepts in Section II. We 
focus in particular on scattering from a (12,6) Lennard-Jones potential and con- 
sider how features in the differential scattering cross section depend on two reduced 
parameters. The radial Schrodinger equation is solved with the potential V(p) = 
(p -‘* - p - “). Here the reduced system parameters are given by A = kR,, B = 
2p~R,,Jfi*, where p is the reduced mass, k the wave vector and R, is the location of 
the potential minimum of depth E. The differential scattering cross section was 
generated using the JWKB result for the partial wave phase shift [7] and the input 
parameters A and B were set equal to 200 and 40,000/3, respectively. The resulting 
cross section Z&0) is given in Fig. 1. We have chosen to focus on the slow 
overriding pattern of the rainbow centered around 8 = 35” and the supernumerary 
rainbows centered around 19 = 24” and 19 = 17.5”. This was accomplished by filtering 
out the high frequency oscillatory structure with the window function fO(t?, 6’) = 
(l/a(2rr)“*) exp[ - (0 - 0’)*/2a*]. This function filters both the cross section and its 
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FIG. 1. Differential cross section Za,a(0) for scattering from a (12-6) Lennard-Jones potential (-) 
in units of Ri and liltered differential cross section Z,I,,(B) (---). Various maxima and minima of Z$,,(O) 
are labelled. 

sensitivities with respect to A and B. The filtered cross section Z{,,(0) and sen- 
sitivities are then given by 

Z!&J) = I* f,(R 0’) Z/l,,(@) &I’ 
JO 

am= 
s R f,(e, ey azyie’) de’ 

aA 0 

m= 
s 

’ f,(e, ey azA&e’) de!. 
aB 0 

(111.1) 

(111.2) 

This example is a particular case of Eq. (11.13) with W= fO. Filtering of this type 
would also be meaningful for incorporating an instrument resolution function in 
order to compare theory and experiment. It was found that setting cr = n/360 was 
sufficient to separate the high and low frequency structure of Z,,,(e). Thus, in 
Fig. 1, one sees that Z$,Je) follows only the low frequency structure of Z,,,(e). At 
the same time it is important that our analysis of the low frequency structure not be 
critically dependent on the actual value of B, the parameter introduced in the win- 
dow function. This was confirmed in a sensitivity test of the smoothed cross section 
with respect to 0‘. 

Table Ia presents results for the normalized sensitivities of the various maxima 
and minima of interest with respect to A, the reduced wavenumber parameter and 
B, the so-called quantum parameter. First, we see that increasing B decreases the 
extrema while increasing A increases them. Second, the sensitivities with respect to 
A are significantly weaker. Third, the extrema became increasingly sensitive to 
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TABLE I 

(a) Sensitivities of the Filtered Differential Cross Section I/,,,(0) with Respect to the Reduced 
Parameters A and E 

max , maxz max, min, min, min, 

A 5.83( -2) 5.67( -2) 6.25( - 2) 8.73( -2) 7.30( - 2) 5.49( - 2) 

B - 1.28 - 1.04 -1.15 -2.50 - 1.50 -0.97 

(b) Sensitivities of the Position of Extrema of the Filtered Differential Cross Section I$,,(@) with 
Respect to the Reduced Parameters A and B 

a In eija In y 

A 

B 

max , maxz 

-0.75 -0.96 

31.7 36.3 

max, 

- 1.20 

41.2 

min , min, min, 

-0.70 -0.88 -1.16 

31.5 35.7 43.8 

input parameter variations as we shift to smaller angles and this is particularly 
marked for the B parameter sensitivities. Table Ib now considers how the variation 
of the A and B parameters affects the position of the extrema. We see that high 
decreasing angle, the position of each extremum becomes less sensitive to variations 
of the input parameters. Also, while increasing A shifts the extrema to smaller 
angles, increasing B shifts the same to higher angles and as in Table Ia has a more 
significant effect on the extrema than A. Sensitivities to other features in Fig. 1 (e.g., 
the oscillation widths) may be similarly examined. The results found here are likely 
system dependent but they clearly serve to show that interesting physical questions 
can be directly addressed by simple application of the ideas in Section II. 

IV. DISCUWON 

We have been concerned with the question of how input parameters affect struc- 
tural features of output. This was done by characterizing the output in terms of the 
behavior of just a few representative points. The choice of points will of course 
depend on the feature being studied. Recently, a more significant and extensive 
application of the methodology of this paper has been undertaken, involving a 
study of wet CO oxidation kinetics [83. 
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It is worth noting again here that in certain circumstances, one may wish to 
transform the original data into a new representation and then examine the 
behavior of critical points in the new data. The example of Section III illustrated 
some of the basic ideas. 

The approach to feature sensitivity questions that has been outlined here, has 
obvious advantages over our alternative sensitivity approach (discussed in Sec- 
tion I) [3,4]. Thus, the analysis here is simpler and avoids having to invoke the art 
of curve fitting. At the same time, however, there may be circumstances for which 
the alternative approach is to be preferred. One may, for example, be interested in 
detecting the appearance of new features in the data and this is readily done within 
the alternative framework. In addition, the fitting approach can be used when 
attempting non-linear parametric scaling of system solutions [9]. 

Problems in feature analysis have their own particular characteristics determined 
by the questions of concern and the mathematical structure of the system. It is not 
unlikely, therefore, that further analytical techniques will be developed reflecting 
this diversity of character. 
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